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Abstract—Nowadays, overlay networks are an essential tool in 
telecommunications. However, few works have addressed the 
optimization of overlay and multi-overlay networks. This work 
focuses on solving the problem of designing a minimum-cost and 
fault-tolerant multi-overlay network. The problem is NP-hard, 
and exact techniques are not appropriate to compute accurate 
solutions efficiently. This work explores the first advances in the 
application of a sequential and a parallel genetic algorithm to 
solve the problem. The experimental analysis is performed on 
real-world scenarios built from a MPLS data network mounted 
over a multiple technology (SDH/DWDM) transport network, by 
the Uruguayan national telecommunications company. The 
analysis show that the studied genetic algorithms are able to 
obtain promising results, while the parallel model significantly 
speeds up the problem resolution. 
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I.  INTRODUCTION 

Telecommunications have grown at a fast pace. The rapid 
development of network infrastructures has been driven by the 
growing demand for data communication over the last 20 
years. As a consequence, the research community has shown a 
renewed interest in network design problems [1]. Overlay and 
multi-overlay networks are an essential tool in 
telecommunication. An overlay network is built on top of 
another network, and their nodes can be seen as connected by 
virtual links, built using many physical links in the underlying 
network. Overlay networks are nowadays present in telephony 
and data communication, such as broadband Internet access, 
voice over IP, etc; and distributed computing systems such as 
cloud computing, peer-to-peer networks, and client-server 
applications [2].  

The multi-overlay robust network design problem 
(MORNDP) is NP-hard, since the Minimum Weight 2-
Connected Network Problem [3] is reducible to it. Therefore, 
classic exact techniques are only applicable to solve very small 
instances of MORNDP. Among a broad set of modern 
heuristics and metaheuristics methods for optimization, 
evolutionary algorithms (EAs) have emerged as promising 
tools for solving network design problems, as they are able to 
compute accurate approximate solutions in acceptable 
execution times [4]. In this line of work, this article explores 
the application of sequential and parallel Genetic Algorithms 
(GA) to solve the MORNDP. 

The experimental analysis of the proposed GAs is 
performed on real-world scenarios provided by the Uruguayan 
national telecommunications company (ANTEL). In these 
scenarios, the MORNDP proposes to find the optimum design 
of an MPLS network mounted over a multi-technology 
transport network (DWDM/SDH) [5]. The company wishes to 
design a robust MPLS data network, which can meet certain 
estimations of the future commercial demands, at the lowest 
cost possible. The transport layer is considered as fixed, as the 
company is not planning to change its topology in the near 
future. As the transport network is an expensive and limited 
resource, the maintenance costs of the transport network are 
transferred to the MPLS network. In fact, all other costs are 
considered as negligible in comparison. Therefore, the problem 
proposes to minimize the use of the transport layer by the 
designed MPLS network. In addition, the proposed network 
must fulfill some reliability constraints to be considered as a 
robust design: the network must support the routing of certain 
traffic demands between nodes, even in the case that a single 
link failure arises in the transport network. 

The main contributions of this article are the proposal of a 
sequential and a parallel GA for solving the MORNDP and the 
experimental evaluation on real-world network scenarios. The 
GAs have been designed using simple operators, that allows 
the proposed methods to be used to solve realistic MORNDP 
scenarios. Promising results are reported for the sequential and 
the parallel version of the GA studied in this work, while the 
parallel model significantly speeds up the problem resolution. 
The proposed GAs are implemented using a well-known 
library of algorithms for optimization, which allows designing 
reusable algorithms that can be easily extended to solve other 
specific variants of the problem. 

The rest of the article is organized as follows. Section 2 
presents an overview of the problem and its mathematical 
formulation, along with a brief summary of related works. The 
main concepts about evolutionary algorithms and the 
sequential and parallel GA applied in this work are presented 
in section 3. The design and implementation details of the 
proposed GAs are described in section 4. The experimental 
evaluation of the algorithms on real-world scenarios is 
reported in section 6. Finally, section 7 comments the main 
conclusions of the research and summarizes the possible lines 
for future work. 



II. MULTI -OVERLAY NETWORK DESIGN PROBLEM 

This section introduces the MORNDP and presents the 
mathematical formulation of the problem and a brief summary 
of relevant related works. 

A. Problem formulation 

The MORNDP proposes to find a reliable design of an 
MPLS multi-overlay network over a fixed transport 
infrastructure, with minimum cost.  

In the studied MORNDP, two different networks are 
present: the data network and the transport network. The data 
network is a MPLS virtual network built over a multiple 
technology (SDH/DWDM) transport network. An example is 
presented in Figure 1, where the black lines represent the 
physical links (transport links), the continuous colored lines 
represent the virtual links (data links) and the dotted lines 
represent physical paths used by the data links. The transport 
network is considered fixed in the model, i.e. the topology of 
the transport network is part of the problem input.  

In contrast to the transport network, the design of the data 
network is part of the problem. Since MPLS networks are 
overlay networks, a second overlay is given by the MPLS 
network. This situation is shown in Fig. 2. As before, thin 
colored lines represent the data links. The continuous wide red 
line represents a MPLS virtual circuit. The path associated to 
this circuit is shown as a dotted red line. 

Solving the MORNDP implies the following: 
• Design the data network, which implies defining the 

links that will finally be included in the network and the 
capacity values assigned to each one. 

• Define the transport paths of each data link included in 
the data network. 

• The designed data network should be tolerant to single 
failures on the transport network. This means that the data 
network should be able of routing all the traffic demand, 
even in case of single failures of the transport links. 

• The maintenance cost of the designed data network 
should be minimized. 

• Define the routing on MPLS circuits for each failure 
scenario. In this work, a simple approach based on 
primary/alternative paths is used to solve this issue. 

B. Mathematical Model 

The mathematical model of the MORNDP considers the 
following elements [5]: 

• GT = (VT,ET) is the graph that represents the (static) 
transport network. 

• GD = (VD,ED) is the graph of candidate elements to include 
in the data network. All data edges in ED are optional. VD 
can be divided into two independent subsets: VF (terminal 
nodes) and VS (optional Steiner nodes). 

• Transport and data graphs are linked by network stations, 
which always contain a transport node. The function 

TD VVtns →:  returns the transport node of the station for a 

given data node. 
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• The vector { }Djiji EeBbB ∈∈= ,, ,ˆ  represents the dimension 

that will be assigned to each link of the data layer. The 
notation jib , is used to refer to the dimension of edge jie , . 

• Let DP  be the set of all possible paths in DG and  
DP

DDD xVVg 2: →  a function that returns all possible 

paths between two data nodes. 
• The function DP

TE 2: →Φ  returns the routing to be used 

for each transport link failure scenario. The notation 

( ) ji
Te ,Φ denotes the routing between vi and vj in GD. 
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• Similarly, TP and Tg  are defined over the graph TG . The 

function TD PE →Ψ :  returns the transport routing for 

any data edge. It must meet the restriction in (2). 

 ( ) ( ) ( )( ) DjijiTji Eevtnsvtnsge ∈∀∈Ψ ,, , . (2) 

• ℜ→TPr :  returns the length of a path (in kilometers). 

• ℜ→BT ˆ:  returns the cost per kilometer for a given data 
edge dimension.  

 
Fig. 1.  Two layer network.  

Fig. 2.  A multi-overlay network. 



The goal of the MORNDP is to determine ),,( ΨΦB , such 

that the total cost function F (in (4)) is minimized, subject to 
the restrictions in (5) and (6). 
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Restriction (5) ensures that for any pair of terminal nodes, the 
routing path in the failure scenario of a transport edge eT does 
not contain eT. Restriction (6) states that the dimension of data 
links is not exceeded by transport links in a failure scenario. 

C. Related work 

To the best of our knowledge, there are no references of 
previous work on the MORDNP outside our workgroup. Risso 
[5] recently presented a mathematical formulation of the 
problem and a specific GRASP algorithm to solve it; and 
Corez [6] applied GRASP and VNS to the MORNDP. 

However, there has been an extensive research on simpler 
MORDNP variants, like the Generalized Steiner Problem 
(GSP) [7] and other overlay network optimization problems. 
Grötschel, Monma, and Stoer [8] introduced several versions 
of the survivable/robust network design problem, while they 
also studied greedy heuristics and integer programming 
techniques to solve them. Alevras, Grötschel, Jonas, Paul, and 
Wessäly [9] addressed an overlay network design problem in 
mobile telecommunication and they proposed applying integer 
programming techniques to solve it. Sridhar and Park [10] 
tackled the survivable capacitated networks design problem 
using an approach that combined the application of 
Lagrangian relaxations and heuristics. The problem of 
designing survivable capacitated networks was also addressed 
by Pickavet, Poppe, Luystermans, and Demeester [11] using 
genetic algorithms, while Leitner [12] and Leitner, Raidl, and 
Hu [13] applied exact and heuristic methods to the 2 
connected minimum network generalized problem. 
Nesmachnow, Cancela, and Alba [14] explored the application 
of parallel metaheuristics (including genetic algorithms, CHC, 
simulated annealing and hybrids) to solve the GSP. The 
optimization of capacitated service overlay networks was 
addressed by Capone, Elias and Martignon [15] using a mixed 
integer linear programming approach. 

III.  EVOLUTIONARY ALGORTIHMS 

EAs are non-deterministic methods that emulate the 
evolutionary process of species in nature, in order to solve 
optimization, search, and other related problems [4]. In the last 
thirty years, EAs have been successfully applied for solving 
optimization problems underlying many real applications of 
high complexity. This section introduces the GA and the 
parallel GA proposed in this work for solving the MORNDP. 

A. Genetic algorithm 

GA is a population-based optimization technique inspired 
in the natural evolution [16][17]. A GA is an iterative 
technique (each iteration is called a generation) that applies 
stochastic operators on a pool of individuals (the population) 
in order to improve their fitness, a measure related to the 
objective function. Every individual in the population is the 
encoded version of a tentative solution of the problem. The 
initial population is generated at random or by using a specific 
heuristic for the problem. An evaluation function associates a 
fitness value to every individual, indicating its suitability to 
the problem. Iteratively, the probabilistic application of 
evolutionary operators like the recombination of parts of two 
individuals or random changes (mutations) in their contents 
are guided by a selection-of-the-best technique to tentative 
solutions of higher quality. The stopping criterion usually 
involves a fixed number of generations or execution time, a 
quality threshold on the best fitness value, or the detection of a 
stagnation situation. Specific policies are used to select the 
groups of individuals to recombine (the selection method) and 
to determine which new individuals are inserted in the 
population in each new generation (the replace criterion). The 
GA returns the best solution ever found in the iterative 
process, taking into account the fitness function considered. 

The generic schema of a GA is shown in Algorithm 1. 

initialize  (Population(0)) 
generation = 0 
while (not stopcriteria) 
 evaluate (P(generation)) 
 parents = selection(P(generation)) 
 offspring = evolutionary operators(parents) 
 newpop = replace(offspring,P(generation)) 
 generation++ 
 P(generation) = newpop 
end 
return  best solution ever found 

Algorithm 1. Schema of a genetic algoritm. 

B. Parallel genetic algorithm 

Parallel implementations became popular in the last decade 
as an effort to improve the efficiency of GAs. By splitting the 
population into several processing elements, parallel genetic 
algorithms (PGAs) allow reaching high quality results in a 
reasonable execution time, even for hard-to-solve optimization 
problems [18]. The parallel GA used in this work to solve the 
MORNDP is categorized within the distributed 
subpopulations model [19]: the original population is divided 
into several subpopulations, separated geographically from 
each other. Each subpopulation runs a sequential EA, so 
individuals are able to interact only with other individuals in 
the subpopulations. An additional migration operator is 
defined: within a certain number of generations some selected 
individuals are exchanged between subpopulations, 
introducing a new source of diversity in the evolutionary 
search mechanism. 



IV.  EVOLUTIONARY ALGORITHMS FOR THE MORNDP 

This section introduces the software library used to 
implement the proposed evolutionary algorithms, and it also 
present the specific sequential and parallel GAs designed in 
this work to solve the MORNDP. 

A. The MALLBA library 

MALLBA [20] is a library of algorithms for optimization 
that can deal with parallelism -on a Local Area Network 
(LAN) or on a Wide Area Network (WAN)-, in a user-friendly 
and, at the same time, efficient manner. The EAs described in 
this section are implemented as generic templates on the 
library as software skeletons, to be instantiated with the 
features of the problem by the user. They incorporate all the 
knowledge related to the resolution method, its interactions 
with the problem, and the parallel considerations. Skeletons 
are implemented by a set of required and provided C++ 
classes that represent an abstraction of the entities 
participating in the resolution method: 
• The provided classes implement internal aspects of the 

solver in a problem-independent way. The most important 
provided classes are Solver (the algorithm) and 
SetUpParams (setup parameters) 

• The required classes specify information specifically 
related to the problem. Each solver includes the required 
classes Problem and Solution, which encapsulate the 
problem-dependent entities needed by the resolution 
method. Depending on the algorithm, other classes may be 
required. 
The MALLBA library is available at University of Málaga 

website http://neo.lcc.uma.es/mallba/easy-mallba. 
Using MALLBA allowed an efficient and reusable 
implementation of the GA and the parallel GA applied to the 
MORNDP in this work. 

B. Genetic Algorithm 

The main details of the specific GAs implemented to solve 
the MORNDP are described in the following paragraphs. 

1) Solution representation 

Using traditional encodings to represent MORNDP 
solutions will require to design specific evolutionary operators 
to maintain the solutions feasibility, thus a problem-dependant 
encoding was used. 

A solution is implicitly encoded by the routings of its 
terminal nodes. Two logical sub-encodings are used: the 
routing encoding and the mapping encoding. Fig. 3 (routing 
encoding) and Fig 4. (mapping encoding) present a graphical 
representation of the two proposed sub-encodings to represent 
MORNDP solutions. 

 
Fig. 3.  Routing encoding. 

The routing encoding is divided in “routing genes” (see Fig. 
3). Each routing gene is associated with a pair of terminal 
nodes with a non-null demand between them. A routing gene 
is composed by the primary path (i.e., the default routing) and 
the alternative path (i.e., the routing applied when any of the 
transport links associated to the primary path fail). Both paths 
are represented as lists of data nodes. The data network is 
implicitly defined by the paths in the routing genes. Each data 
link present in any path should be also present in the data 
network. The capacity of each link is calculated taking the 
minimum bandwidth available that supports the maximum 
data rate achieved for all failure scenarios. 

The mapping encoding defines the transport mapping of 
each data edge present in the solution (see Fig. 4). Each gene 
in the mapping encoding is associated to a data link present in 
the solution. The gene contains a list of transport nodes that 
represents the transport path associated to the data link. 

 

Fig. 4.  Mapping encoding. 



The proposed two-vector encoding defines all attributes of a 
MORNDP solution: 

• data links and their capacity are implicitly defined by the 
routing encoding; 

• data routings are defined by the routing encoding; 
• transport routings are defined by the mapping encoding. 

2) Initialization 

A specific procedure was proposed to generate feasible 
initial solutions in the GA. It is a kind of greedy randomized 
algorithm that can delete (previously incorporated) elements in 
the solution, if the construction process gets stuck.  

The algorithm follows a cyclic procedure that tries to 
generate a routing gene in each step. The construction of the 
mapping genes is subordinated to the construction of the 
routing genes. Each routing gene is built in an iterative 
process: at each step the algorithm randomly selects a new 
data link to append to the existing routing gene. The selection 
is performed using the roulette wheel technique: data links that 
add high costs to the network are rated with low probability, 
and data links that add low costs or are already present on the 
solution are rated with high probability. If a selected data link 
is not mapped, the mapping gene generation is applied. It is 
also an iterative process that selects transport links using the 
roulette wheel technique. The aptitude function that is used to 
rate transport links is inversely proportional to the kilometers 
of a transport link. 

The routing gene generation can fail, mainly by capacity 
overflow issues or primary-alternative path collision. If the 
routing gene construction fails after twenty attempts, a 
selected routing gene already incorporated to the solution is 
deleted and re-built in a different way. This process is repeated 
until the routing gene that is being constructed is completed. 

The described greedy constructor is also used to repair 
unfeasible solutions after applying the evolutionary operators. 

3) Crossover 

Traditional crossover operators do not assure to generate 
feasible solutions when applied to the MORNDP. To deal with 
this problem, an ad-hoc crossover operator was designed.  

The child is generated step by step, by copying a routing 
gene and all dependant mapping genes from a randomly 
selected parent. The crossover verifies that the primary and the 
alternative paths are independent in the child (they could 
intersect in the child, as some transport mappings in the child 
can be different to the original ones in the parent). The 
capacity restrictions are also checked and corrected if 
necessary. This process is repeated until the routing gene is 
successfully copied or no more parents are left. If the routing 
gene insertion fails, the routing encoding will remain 
incomplete and the new solution will not be feasible. The 
greedy randomized solution generator/corrector is then applied 
to complete the missing parts of the individual. 

The behavior of the crossover operator is shown in Fig. 5. 
The routing gene [2,4] is marked with orange because it could 
not be inserted from any of the parent individuals. The routing 
genes [0,4] and [2,4] were created using the generator/corrector 
greedy algorithm described in the previous subsection.  

 
Fig. 5.  Crossover example. 

4) Mutation 

Five mutation operators were proposed to introduce 
diversity and improve the solutions in the GA: 

• Data layer mutation: it rebuilds a random gene of the 
routing encoding, mainly modifying the paths in the data 
layer. This mutation can change the mapping of a data 
link if this link is used only by one routing gene. The 
gene rebuilding task is delegated to the greedy 
randomized solution generator/corrector. 

• Transport layer mutation: it changes the mapping of data 
links by randomly selecting a set of mapping genes and 
modifying a portion of the path in each selected gene. 

• Tabu link mutation: it randomly selects a “tabu” data link 
which is eliminated along with its associated genes from 
the solution. The randomized solution generator/corrector 
is then used to rebuild the missing parts of the solution, 
without using the tabu link. 

• Best data layer mutation: it is a local search operator that 
uses the data layer mutation as a base for searching in the 
neighborhood of a solution. The operator modifies the 
current solution 30 times and the best result is returned. 

• Best transport layer mutation: it is another local search 
operator that uses the transport layer mutation for the 
neighborhood search. Like the previous operator, it 
performs 20 changes and returns the best result found. 

C. Parallel GA 

 The parallel GA follows the distributed subpopulation 
model, using the same encoding and operators than the 
sequential GA. A migration operator exchanges individuals 
between subpopulations, considering them connected in a 
unidirectional ring. Four subpopulations were used in the PGA. 



V. EXPERIMENTAL ANALYSIS 

This section presents the experimental evaluation of the 
proposed GAs for solving the MORNDP. 

A. Development and execution platform 

The GAs were implemented in C++, using the MALLBA 
library and the standard GNU compiler, version 4.1.2. The 
parallel GA uses the MPICH (version 1.2.7) implementation 
of MPI [21] for the distributed execution. 

The experimental analysis was performed in the Cluster 
FING high performance computing infrastructure [22], using 
Quad core Xeon E5430 servers at 2.66 GHz, with 8 GB RAM 
and Linux CentOS operating system. 

B. Test instances 

Two different sets of test scenarios were used in the 
experimental evaluation. A set of simple heterogeneous 
scenarios was constructed for the parameters calibration of the 
proposed algorithms. These scenarios were created using a 
random generator program. In addition, a set of realistic and 
more complex scenarios, much more appropriate to test the 
efficiency and quality of the proposed algorithms, was used in 
the experimental evaluation. A subset of three scenarios 
presented by Risso [5] was used for these proposes. These 
scenarios were constructed using the estimated traffic demand 
data over the MPLS network of ANTEL for 2013. The main 
characteristics of the used scenarios are presented in Table I.  

C. Parameters calibration 

A calibration analysis was performed in order to determine 
the best parameter values for the GA operators. The parameter 
setting analysis was performed using a set of six randomly 
generated MORNDP instances with reduced size. The studied 
parameters included: population size (#pop), crossover 
probability (pC), data layer mutation probability (pdM), 
transport layer mutation probability (ptM), best data layer 
mutation probability (pbdM), best transport layer mutation 
probability (pbtM), number of generations (#gen) and number 
of subpopulations (#I) in the parallel GA. The candidate values 
for the parameters were #pop: 30, 50, and 70 individuals; pC : 
0.6, 0.8, 0.9; pdM : 0.01, 0.05; ptM : 0.01, 0.05; pbdM : 0.30, 0.70; 
pdM : 0.30, 0.70, #gen: 1000, 2000, and #I: 2, 4, 8. 

In the parameters setting experiments, the best results were 
obtained when using the following parameter configuration: 
#pop: 50 individuals; pC = 0.6; pdM = 0.01; ptM = 0.01; pbdM = 
0.70; pbtM  = 0.70, #gen = 2000. #I = 4. 

D. Evaluation on real-world scenarios 

The final evaluation of the proposed algorithms was 
performed using the set of three real-world scenarios from 
ANTEL, whose details are presented in Table I. 

Table II presents the best and average cost values, and the 
standard deviation results obtained in 15 independent 
executions of the sequential and parallel GA. The time 
required to execute the algorithm, (avg. time), in hours, and 
the time to achieve the best solution (tBEST) are also reported.  

TABLE I.  CHARACTERISTICS OF THE REAL-WORLD ANTEL SCENARIOS  

Scenario #data 
nodes 

# traffic 
requisites 

# traffic 
links 

# candidate 
data links 

traffic 
demand (Gb) 

02 56 58 164 286 39465 
06 56 58 164 286 26543 
10 56 58 164 286 28182 

TABLE II.  EXPERIMENTAL RESULTS FOR REAL-WORLD SCENARIOS  

 
Scenario 02 

best cost avg. cost st. dev. avg. time (h) tBEST (h) 

GA 562549 625795 43688 109.19 97.04 

PGA 566856 612832 34285 46.04 42.45 

 
Scenario 06 

best cost avg. cost st. dev. avg. time (h) tBEST (h) 

GA 538079 576988 23569 115.00 98.91 

PGA 486894 550120 42203 33.95 29.30 

 
Scenario 10 

best cost avg. cost st. dev. avg. time (h) tBEST. (h) 

GA 544673 575028 20830 125.20 103.13 

PGA 515785 557720 26207 39.83 37.32 

Table II shows that the sequential GA took a long time to 
execute the 2000 generations, mainly due to the inherent 
complexity of the large real-world scenarios tackled (but it is 
actually a reasonable time for hard network design problems). 
However, the efficiency results also demonstrate that the 
distributed subpopulation model allows the parallel GA to 
significantly reduce the execution times. Additionally, the 
parallel model outperformed the sequential GA regarding the 
best cost for two out of the three studied scenarios, and 
regarding the average cost in all of them best cost.  

Table III summarizes the performance metrics for the 
parallel model. It reports the values for the speedup and 
computational efficiency metrics. The speedup (SP) is defined 
as the ratio between the time required by the sequential GA 
and the parallel GA when using P computational resources. 
The computational efficiency (eP) is a normalized value of the 
speedup, considering the number of computational resources 
(eP = SP / P). Table III reports the speedup and the 
computational efficiency of the parallel GA when using four 
computing resources. 

The results in Table III indicate that the parallel GA showed 
a sub-linear speedup behavior, but very good efficiency values 
(i.e. near 0.8) when using four computing resources were 
achieved for the two more complex scenarios. These 
efficiency values suggest that using a parallel GA model is an 
efficient and effective approach to solve the MORNDP. 

TABLE III.  PERFORMANCE METRICS FOR THE PARALLEL GA 

Scenario speedup (S4) Efficiency (e4) 

02 2.37 0.59 

06 3.38 0.85 

10 3.14 0.79 



 

 

Fig. 6.  Fitness evolution example (Scenario 10). 

Figure 6 presents an example of the graphical analysis for 
an important feature in EAs and other metaheuristics: the 
evolution of the average fitness values along the generations. 
The comparative analysis shows that the parallel GA is able to 
compute more accurate solutions than the sequential GA in 
significantly lower execution times, as it is presented in the 
sample evolution for the Scenario 10 problem instance. This 
behavior was consistently detected in every execution of GA 
and PGA for the three studied scenarios. 

Table IV presents a comparison of the best results obtained 
using GA and PGA with the results achieved with the GRASP 
method by Risso [5]. The comparative analysis shows that the 
best results obtained with the evolutionary techniques are still 
far away from the best results previously presented for the 
problem. However, the results by Risso are only taken into 
account as a relative reference baseline to compare our results, 
due to two important considerations that have to be remarked: 
i) a less restrictive routing algorithm is used by Risso, 
allowing more than two routes between each pair of nodes, 
instead of the much more simple routing approach based on 
primary/alternative paths used in the GAs proposed in this 
work; and ii) the proposed GAs were designed to follow a 
simple search approach, without using much problem-specific 
information in the evolutionary operators, while the GRASP 
method by Risso heavily relies on a sophisticated construction 
scheme for the candidate solutions.  

Another important consideration is that all the best results 
obtained with the parallel GA represent a significant 
improvement in the network design cost with respect to the 
actual design by ANTEL. 

Taking into account the previously presented arguments, the 
results obtained with the parallel GA can be considered as a 
promising first step for solving the MORNDP with a non-
specific metaheuristic for the problem. 

TABLE IV.  COMPARISON WITH PREVIOUS RESULTS 

Scenario best cost 
GA/PGA best cost [5] gap 

02 562549 532896 5.5 % 

06 486894 451360 7.8 % 

10 515785 451360 14.2 % 

VI.  CONCLUSIONS AND FUTURE WORK 

This work presented the first advances on applying a 
sequential and a parallel evolutionary algorithm to solve the 
multi-overlay robust network design problem. The MORNDP 
is a complex NP-hard optimization problem that models the 
structural design of important modern telecommunication 
infrastructures, and few previous works have addressed its 
resolution using generic metaheuristics. 

The GA and the parallel GA proposed in this work were 
designed using simple and intuitive evolutionary operators, 
without including much problem-specific information or 
sophisticated optimization methods for the search. 

The algorithms were evaluated over a set of three real-
world network design scenarios built with data provided by 
the Uruguayan national telecommunications company 
(ANTEL). The experimental analysis allowed us to conclude 
that promising results were obtained with the proposed GAs, 
especially with the parallel GA, despite the simple approach 
followed to design the evolutionary operators. 

Regarding the computational efficiency, the parallel version 
of the proposed GA significantly improved over the execution 
times of the sequential GA. The speedup and computational 
efficiency values were almost-linear for two out of the three 
problem instances solved. In addition, the fitness evolution 
analysis showed that the parallel GA was able to compute 
more accurate solutions than the sequential GA in 
significantly lower execution times. These two previous 
results suggest that the use of parallel implementations of GA 
is a promising idea to efficiently solve the MORNDP.  

Two main lines remain to be tackled as future work, both 
already in progress: improving the efficiency of the proposed 
methods, and improve the search mechanism in order to obtain 
better network designs. Regarding the first line for future 
work, the computational efficiency of the proposed GAs 
should be increased by applying a more effective parallel 
strategy that allow increasing the number of subpopulations in 
the parallel GA without reducing the quality of the solutions. 
On the other hand, the comparison with the previous results 
obtained for the problem using other techniques showed that 
there is still room to improve the evolutionary search in order 
to obtain better results with GAs. Regarding this issue, 
additional simple evolutionary operators have to be analyzed, 
and other variants of the problem (i.e., those that include the 
routing method described in [5]) should be studied. We are 
currently working in these commented lines right now. 
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