Evolutionary algorithms for the design of
multi-overlay robust networks

L. Gomez, F. Casalongue, G. Lasalt, F. RobledbleSmachnow

Facultad de Ingenieria,

Universidad de la Republica

Montevideo, Uruguay
{lgomez,fcasalongue,glasalt,frobledo,sergion}@fedy.uy

Abstract—Nowadays, overlay networks are an essential toohi
telecommunications. However, few works have addresd the
optimization of overlay and multi-overlay networks. This work
focuses on solving the problem of designing a minum-cost and
fault-tolerant multi-overlay network. The problem is NP-hard,
and exact techniques are not appropriate to computaccurate
solutions efficiently. This work explores the firstadvances in the
application of a sequential and a parallel geneti@algorithm to
solve the problem. The experimental analysis is pfrmed on
real-world scenarios built from a MPLS data network mounted
over a multiple technology (SDH/DWDM) transport netvork, by
the Uruguayan national telecommunications company.The
analysis show that the studied genetic algorithmsra able to
obtain promising results, while the parallel modelsignificantly
speeds up the problem resolution.
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. INTRODUCTION

Telecommunications have grown at a fast pace. @pir
development of network infrastructures has beevedrby the
growing demand for data communication over the Rt
years. As a consequence, the research communitshioasm a
renewed interest in network design problems [1]ed&y and
multi-overlay networks are an essential tool
telecommunication. An overlay network is built ooptof
another network, and their nodes can be seen aectu by
virtual links, built using many physical links ihe underlying
network. Overlay networks are nowadays presentlaphony
and data communication, such as broadband Intercesss,
voice over IP, etc; and distributed computing systesuch as
cloud computing, peer-to-peer networks, and clgmter
applications [2].

The multi-overlay robust network design
(MORNDP) is NP-hard,since the Minimum Weight 2-
Connected Network Problem [3] is reducible to ihefefore,
classic exact techniques are only applicable teeseéry small

The experimental analysis of the proposed GAs is
performed on real-world scenarios provided by theguayan
national telecommunications company (ANTEL). In sihe
scenarios, the MORNDP proposes to find the optind@sign
of an MPLS network mounted over a multi-technology
transport network (DWDM/SDH) [5]. The company wishe
design a robust MPLS data network, which can medait
estimations of the future commercial demands, atlthvest
cost possible. The transport layer is considerefikad, as the
company is not planning to change its topologyha hear
future. As the transport network is an expensive Emited
resource, the maintenance costs of the transponorie are
transferred to the MPLS network. In fact, all otloests are
considered as negligible in comparison. Therefibre problem
proposes to minimize the use of the transport ldyerthe
designed MPLS network. In addition, the proposetivoek
must fulfill some reliability constraints to be cidered as a
robust design: the network must support the routihgertain
traffic demands between nodes, even in the caseatbagle
link failure arises in the transport network.

The main contributions of this article are the megl of a

sequential and a parallel GA for solving the MORN&#® the

~ experimental evaluation on real-world network scirsa The

INGAs have been designed using simple operators,attwat's
the proposed methods to be used to solve reasD&NDP
scenarios. Promising results are reported for ¢lgeiential and
the parallel version of the GA studied in this wonkile the
parallel model significantly speeds up the problesolution.
The proposed GAs are implemented using a well-known
library of algorithms for optimization, which all@xdesigning
reusable algorithms that can be easily extendesblice other
specific variants of the problem.

problem  The rest of the article is organized as followsct®e 2

presents an overview of the problem and its mattieaia
formulation, along with a brief summary of relatedrks. The

main concepts about evolutionary algorithms and the

instances of MORNDP. Among a broad set of moderrye, ential and parallel GA applied in this work presented

heuristics and metaheuristics methods for optirdrat
evolutionary algorithms (EAs) have emerged as psomi
tools for solving network design problems, as they able to
compute accurate approximate solutions
execution times [4]. In this line of work, this ial¢é explores
the application of sequential and parallel Gené&tgorithms
(GA) to solve the MORNDP.

in acceptab

in section 3. The design and implementation detaflgthe
proposed GAs are described in section 4. The exeetal
|evaluation of the algorithms on real-world sceraris
reported in section 6. Finally, section 7 commehts main
conclusions of the research and summarizes thébhpmdines
for future work.



Fig. 1. Two layer network.

Fig. 2. A multi-overlay network.

Il.  MULTI-OVERLAY NETWORK DESIGN PROBLEM B. Mathematical Model
This section introduces the MORNDP and presents the The mathematical model of the MORNDP considers the
mathematical formulation of the problem and a bsighmary following elements [3]:

of relevant related works. e Gy = (V5,Ey) is the graph that represents the (static)
_ transport network.
A. Problem formulation * Gp = (Vp,Ep) is the graph of candidate elements to include

in the data network. All data edgesEp are optionalVp

can be divided into two independent subs¥ts(terminal
nodes) and/s (optionalSteiner nodes).

Transport and data graphs are linked by networtiosis
which always contain a transport node. The function

The MORNDP proposes to find a reliable design of an
MPLS multi-overlay network over a fixed transport
infrastructure, with minimum cost.

In the studied MORNDP, two different networks are*®
present: the data network and the transport netvwidik data

network is a MPLS virtual network built over a nplé
technology (SDH/DWDM) transport network. An examijde
presented in Figure 1, where the black lines remeshe
physical links (transport links), the continuoudoted lines
represent the virtual links (data links) and thdtetb lines
represent physical paths used by the data links. tfdnsport
network is considered fixed in the model, i.e. thpology of
the transport network is part of the problem input.

In contrast to the transport network, the designhef data
network is part of the problem. Since MPLS netwosgts
overlay networks, a second overlay is given by LS
network. This situation is shown in Fig. 2. As lefothin
colored lines represent the data links. The contisuvide red
line represents a MPLS virtual circuit. The pathom$ated to
this circuit is shown as a dotted red line.

Solving the MORNDP implies the following:

« Design the data network, which implies defining the

links that will finally be included in the netwodnd the
capacity values assigned to each one.

« Define the transport paths of each data link inetudh
the data network.

e The designed data network should be tolerant tglesin

failureson thetransport networkT his means that the data *

networkshouldbe ableof routingall the traffic demand,
even in case of single failures of the transpokdi

The maintenance cost of the designed data network
should be minimized.

Define the routing on MPLS circuits for each fadur *
scenario. In this work, a simple approach based op
primary/alternative paths is used to solve thigéss

tns:V, — V, returns the transport node of the station for a

given data node.

M = lm J . is the demand matrix between terminal
Jhsi < ve |

nodes.

A data link cannot be dimensioned to an arbitraacity.
é:{ﬁo,ﬁl,_ﬁé} represents the capacities that a data link
can hold. If a data link is not included in theumn, a
null capacity 60 =0) is assigned to it.

The vectorp :{b”. 0 é,qj 0 ED} represents the dimension
that will be assigned to each link of the data taykhe
notation Q,,— is used to refer to the dimension of e(m?.

Let P, be the set of all possible paths @&, and

Up:VpXV, - 2% a function that returns all possible
paths between two data nodes.

The function®: E, - 2% returns the routing to be used
for each transport link failure scenario. The notat
®(e, )"’ denotes the routing betweerandy; in Gp.

ofe )’ =ofer)n gy i, §)- (1)
Similarly, P; andg are defined over the grafh, . The

function W:E, - B returns the transport routing for
any data edge. It must meet the restriction in (2).

W(e ;)0 gr (tnslv, ) tnsly, )Joe , DE, . @
r: P - O returns the length of a path (in kilometers).

T:B - O returns the cost per kilometer for a given data
edge dimension.



The goal of the MORNDP is to determifB, ®, W), such

that the total cost functiok (in (4)) is minimized, subject to
the restrictions in (5) and (6).

FB.ow)= Yr(we,)Th,) @
1<i<j<|Vp|
6, 0®(e)’ - q0W(g,) -
Oe OE;,V,V;,V,,v, OV /m ; 20
Ble,.)> 3 m'j‘d)(er)i"’ n epq‘ Oe, OE; e, 0E, (6)

1<i<jgVg|

Restriction (5) ensures that for any pair of temhimodes, the
routing path in the failure scenario of a transgalgee; does

A. Genetic algorithm

GA is a population-based optimization techniquepiires!
in the natural evolution [16][17]. A GA is an itdirae
technique (each iteration is calledgeneration) that applies
stochastic operators on a pool of individuals (bpulation)
in order to improve theifitness, a measure related to the
objective function. Every individual in the popudat is the
encoded version of a tentative solution of the fmab The
initial population is generated at random or byhgsa specific
heuristic for the problem. An evaluation functiossaciates a
fitness value to every individual, indicating itgitability to
the problem. Iteratively, the probabilistic apptioa of
evolutionary operators like the recombination of parts of two

not contairer. Restriction (6) states that the dimension of datdndividuals or random changesntations) in their contents

links is not exceeded by transport links in a falacenario.

C. Related work

To the best of our knowledge, there are no refareraf
previous work on the MORDNP outside our workgroRsso
[5] recently presented a mathematical formulatidh tioe
problem and a specific GRASP algorithm to solve aitd
Corez [6] applied GRASP and VNS to the MORNDP.

However, there has been an extensive researchmpiesi
MORDNP variants, like the Generalized Steiner Rrobl
(GSP) [7] and other overlay network optimizatiorolgems.
Grotschel, Monma, and Stoer [8] introduced seveeasions
of the survivable/robust network design problemjlevithey
also studied greedy heuristics and integer progragm
techniques to solve them. Alevras, Grotschel, Jdhasl, and
Wessadly [9] addressed an overlay network desigbleno in
mobile telecommunication and they proposed applyiteger
programming techniques to solve it. Sridhar andk Ha0]
tackled the survivable capacitated networks degigyblem
using an approach that combined the application
Lagrangian relaxations and heuristics. The problef
designing survivable capacitated networks was atkiressed
by Pickavet, Poppe, Luystermans, and Demeester J&ihp
genetic algorithms, while Leitner [12] and Leitn&aidl, and
Hu [13] applied exact and heuristic methods to the
connected minimum network generalized
Nesmachnow, Cancela, and Alba [14] explored thdicgijmn
of parallel metaheuristics (including genetic altfons, CHC,
simulated annealing and hybrids) to solve the GERe
optimization of capacitated service overlay netvgonkas
addressed by Capone, Elias and Martignon [15] usimgxed
integer linear programming approach.

Ill.  EVOLUTIONARY ALGORTIHMS

are guided by a selection-of-the-best techniqueetaative
solutions of higher quality. The stopping criteriasually
involves a fixed number of generations or executiare, a
quality threshold on the best fitness value, ordbtection of a
stagnation situation. Specific policies are usedseaect the
groups of individuals to recombine (tbeection method) and
to determine which new individuals are inserted the
population in each new generation (tleplace criterion). The
GA returns the best solution ever found in the alige
process, taking into account the fitness functiomsidered.

The generic schema of a GA is shown in Algorithm 1.

initialize (Population(0))

generation =0

while (not stopcriteria)
evaluate (P(generation))
parents =selectior{P(generation))
offspring =evolutionary operatorgparents)
newpop =replacg(offspring,P(generation))
generation++

f P(generation) = newpop
end
return best solution ever found

problem.

Algorithm 1. Schema of a genetic algoritm.

B. Parallel genetic algorithm

Parallel implementations became popular in thedasade
as an effort to improve the efficiency of GAs. Byliting the
population into several processing elements, grgknetic
algorithms (PGAs) allow reaching high quality resuin a
reasonable execution time, even for hard-to-soptarization
problems [18]. The parallel GA used in this workstave the
MORNDP is categorized within  the distributed
subpopulations model [19]: the original population is divided
into several subpopulations, separated geographifam

EAs are non-deterministic methods that emulate th&ach other. Each subpopulation runs a sequential $0A

evolutionary process of species in nature, in otdesolve
optimization, search, and other related problerhdifdthe last
thirty years, EAs have been successfully appliadsfiving
optimization problems underlying many real applmas of
high complexity. This section introduces the GA atig
parallel GA proposed in this work for solving theORNDP.

individuals are able to interact only with othediwviduals in
the subpopulations. An additionahigration operator is
defined: within a certain number of generations s@®lected
individuals are exchanged between subpopulations,
introducing a new source of diversity in the eviooary
search mechanism.



implement the proposed evolutionary algorithms, @nalso
present the specific sequential and parallel GAsigied in
this work to solve the MORNDP.

A. The MALLBA library

that can deal with parallelism -on a Local Area Wk
(LAN) or on a Wide Area Network (WAN)-, in a useteindly
and, at the same time, efficient manner. The EAsrileed in
this section are implemented as generic templateshe
library as software skeletons, to be instantiated with the
features of the problem by the user. They incoreosdl the

IV. EVOLUTIONARY ALGORITHMS FOR THEMORNDP
0,1 0,2 0,3 04 fF---1 14 23 3.4

This section introduces the software library used t

Node 4
Routing gene Node 0
The traffic demand

between nodes 4
and 0 is not null

MALLBA [20] is a library of algorithms for optimiz#on

yred sAneUIONY

knowledge related to the resolution method, it®rattions Fig. 3. Routing encoding.
with the problem, and the parallel consideratidBkeletons

are implemented by a set oéquired and provided C++

The routing encoding is divided in “routing genésée Fig.

classes that represent an abstraction of the emtiti3).- Each routing gene is associated with a paiteofinal
participating in the resolution method: nodes with a non-null demand between them. A rgugene

websiteht t p: // neo. | cc. uma. es/ nal | ba/ easy- mal | ba.
Using MALLBA allowed an efficient and reusable
implementation of the GA and the parallel GA applie the
MORNDRP in this work.

B. Genetic Algorithm
The main details of the specific GAs implementeddtve 12 1 13 | 14| 20 pfo] 84 | 32 | 45
the MORNDP are described in the following paragsaph AN

solutions will require to design specific evolutéoyg operators

The provided classes implement internal aspectshef IS composed by the primary path (i.e., the defeulting) and
solver in a problem-independent way. The most igpar  the alternative path (i.e., the routing applied wiaay of the
provided classes are Solver (the algorithm) andransport links associated to the primary path.f&@bth paths
SetUpParams (setup parameters) are represented as lists of data nodes. The dateonkeis

The required classes specify information specifical implicitly defined by the paths in the routing gen&ach data
related to the problem. Each solver includes thipiired  link present in any path should be also presenthé data
classes Problem and Solution, which encapsulate theetwork. The capacity of each link is calculateHirtg the

problem-dependent entites needed by the resolutiominimum bandwidth available that supports the maxim
method. Depending on the algorithm, other classegive  data rate achieved for all failure scenarios.

required. . . . . . . The mapping encoding defines the transport mappihg
The MALLBA library is available at University of Maga each data edge present in the solution (see Figath gene
in the mapping encoding is associated to a dakapliasent in

the solution. The gene contains a list of transpodes that
represents the transport path associated to thdidkt

1) Solution representation
Using traditional encodings to represent MORNDP

Data node 2

Mapping gene Data node 1

L : . The link (1,2)
to maintain the solutions feasibility, thus a pevhtdependant _ appears il(l the
encoding was used. The node 1'is the routing chromosome

terminal nodes. Two logical sub-encodings are udée:
routing encoding and themapping encoding. Fig. 3 (routing

transport node in the

A solution is implicitly encoded by the routings @6 station of data node 1

The node 2' is the
transport node in
the station of data

encoding) and Fig 4. (mapping encoding) presemntagldcal node 2

representation of the two proposed sub-encodingspesent

Fig. 4. Mapping encoding.

MORNDP solutions.



The proposed two-vector encoding defines all atteb of a Routing sub-chromosome Mapping sub-chromosome
MORNDP solution:
» data links and their capacity are implicitly definley the
routing encoding;
» data routings are defined by the routing encoding;
 transport routings are defined by the mapping eimgpd

2) Initialization
A specific procedure was proposed to generate Hieasi Routing sub-chromosome Mapping sub-chromosome
1, 2, 13

initial solutions in the GA. It is a kind of greedsgndomized 5 " ‘ " | » ’ i ‘ | » ‘ - | » ‘
nn | n
[o][<]] 1 [ B [
[4]

algorithm that can delete (previously incorporateléments in Parent 2
Routing sub-chromosome Mapping sub-chromosome

Parent 1

Lo ]
the solution, if the construction process getskstuc ﬂ
The algorithm follows a cyclic procedure that tries
generate a routing gene in each step. The coristnuof the KEE
mapping genes is subordinated to the constructibrihe ][z]
routing genes. Each routing gene is built in amattee
process: at each step the algorithm randomly selechew
data link to append to the existing routing gentge $election
is performed using the roulette wheel techniquéa tiaks that Child
add high costs to the network are rated with loabpbility,
and data links that add low costs or are alreadgqnt on the
solution are rated with high probability. If a seled data link
is not mapped, the mapping gene generation is exppli is
also an iterative process that selects transpuks lusing the
roulette wheel technique. The aptitude functiort thaised to ~ Fig- 5. Crossover example.
rate transport links is inversely proportional e tkilometers 4) Mutation
of a transport link.

The routing gene generation can fail, mainly by acaty
overflow issues or primary-alternative path cadlisi If the
routing gene construction fails after twenty attésnpa
selected routing gene already incorporated to thetien is
deleted and re-built in a different way. This pregxés repeated
until the routing gene that is being constructecbisipleted.

The described greedy constructor is also used paire
unfeasible solutions after applying the evolutignaperators.

Five mutation operators were proposed to introduce
diversity and improve the solutions in the GA:

« Data layer mutation: it rebuilds a random gene of the
routing encoding, mainly modifying the paths in tega
layer. This mutation can change the mapping of ta da
link if this link is used only by one routing genghe
gene rebuilding task is delegated to the greedy
randomized solution generator/corrector.

Transport layer mutation: it changes the mapping of data

3) Crossover links by randomly selecting a set of mapping gesred

Traditional crossover operators do not assure temgde modifying a portion of the path in each selectedege
feasible solutions when applied to the MORNDP. Ealdvith e Tabu link mutation: it randomly selects a “tabu” data link
this problem, an ad-hoc crossover operator wagjdedi which is eliminated along with its associated geines

The child is generated step by step, by copyinguing thesolution. The randomized solution generator/coarect
gene and all dependant mapping genes from a ragdoml is then used to rebuild the missing parts of tHatsm,
selected parent. The crossover verifies that thegpy and the without using the tabu link.
alternative paths are independent in the childy(tbeuld » Best data layer mutation: it is a local search operator that
intersect in the child, as some transport mappingke child uses the data layer mutation as a base for segriththe
can be different to the original ones in the p3areiite neighborhood of a solution. The operator modifies t
capacity restrictions are also checked and comedfe current solution 30 times and the best resulttisrned.
necessary. This process is repeated until thenguene is » Best transport layer mutation: it is another local search
successfully copied or no more parents are lefthdfrouting operator that uses the transport layer mutationtfier
gene insertion fails, the routing encoding will =@@m neighborhood search. Like the previous operator, it
incomplete and the new solution will not be feasibThe performs 20 changes and returns the best resuitifou

greedy randomlze_d s_olutlon generat(_)r/qo_rrectdneﬂ tapplied C. Paralld GA
to complete the missing parts of the individual. o )

The behavior of the crossover operator is showfign 5. The parallel GA follows the distributed subpopidat
The routing gene [2,4] is marked with orange beeausould ~Model, using the same encoding and operators than t
not be inserted from any of the parent individu@ilse routing ~ Sequential GA. A migration operator exchanges iiials
geneg0,4] and[2,4] were createdsing the generator/corrector Petween subpopulations, considering them conneated
greedy algorithm described in the previous subsecti unidirectionaking. Foursubpopulationgrere used in the PGA.



V. EXPERIMENTAL ANALYSIS

This section presents the experimental evaluatibthe
proposed GAs for solving the MORNDP.

A. Development and execution platform

The GAs were implemented in C++, using the MALLBA
library and the standard GNU compiler, version 2..IThe
parallel GA uses the MPICH (version 1.2.7) impletagon
of MPI [21] for the distributed execution.

The experimental analysis was performed in the t€tus
FING high performance computing infrastructure [2@$ing
Quad core Xeon E5430 servers at 2.66 GHz, with 8RARI
and Linux CentOS operating system.

B. Test instances

Two different sets of test scenarios were used ha t
experimental evaluation. A set of simple heterogese
scenarios was constructed for the parameters atibbrof the
proposed algorithms. These scenarios were creadsd) &
random generator program. In addition, a set olist&mand
more complex scenarios, much more appropriate 20 the
efficiency and quality of the proposed algorithmss used in
the experimental evaluation. A subset of three @Ges
presented by Risso [5] was used for these propddesse
scenarios were constructed using the estimatefictcefmand
data over the MPLS network of ANTEL for 2013. Thaim
characteristics of the used scenarios are presenieazble I.

C. Parameterscalibration

A calibration analysis was performed in order téedmine
the best parameter values for the GA operators.pan@meter
setting analysis was performed using a set of andomly
generated MORNDP instances with reduced size. Tthesl
parameters included: population size (#pop), CMESSO
probability (c), data layer mutation probability pgs),
transport layer mutation probabilitypyi), best data layer
mutation probability gugv), best transport layer mutation

TABLE I.

CHARACTERISTICS OF THE REAEWORLD ANTEL SCENARIOS

Scenario #data # traffic # traffic # candidate traffic
nodes | requisites links data links | demand (Gb)
02 56 58 164 286 39465
06 56 58 164 286 26543
10 56 58 164 286 28182
TABLE 1. EXPERIMENTAL RESULTS FOR REAEWORLD SCENARIOS
Scenario 02
best cost avg. cost st. dev. avg. time (h) teesr (h)
GA 562549 625795 43688 109.19 97.04
PGA 566856 612832 34285 46.04 42.45
Scenario 06
best cost avg. cost st. dev. avg. time (h) teesr (h)
GA 538079 576988 23569 115.00 98.91
PGA 486894 550120 42203 33.95 29.30
Scenario 10
best cost avg. cost st. dev. avg. time (h) tgest. (h)
GA 544673 575028 20830 125.20 103.13
PGA 515785 557720 26207 39.83 37.32

Table Il shows that the sequential GA took a loingetto
execute the 2000 generations, mainly due to theranrtt
complexity of the large real-world scenarios tadk{but it is
actually a reasonable time for hard network degpignblems).
However, the efficiency results also demonstratat tthe
distributed subpopulation model allows the parafBA to
significantly reduce the execution times. Additittyathe
parallel model outperformed the sequential GA réiyay the
best cost for two out of the three studied scesarand
regarding the average cost in all of them best cost

Table Il summarizes the performance metrics foe th
parallel model. It reports the values for theeedup and
computational efficiency metrics. The speeduj®d is defined
as the ratio between the time required by the se@guieGA

probability @ww), number of generations (#gen) and numberng the parallel GA when usirg computational resources.
of subpopulationg#l) in the parallel GA. The candidate values Tpe computational efficiencyey) is a normalized value of the

for the parameters were #pop: 30, 50, and 70 iddals;pc:
0.6, 0.8, 0.9pgw: 0.01, 0.05py: 0.01, 0.05pugv : 0.30, 0.70;
pav : 0.30, 0.70, #gen: 1000, 2000, and #l: 2, 4, 8.

In the parameters setting experiments, the besttsaesere
obtained when using the following parameter comfigon:
#pop: 50 individualspc = 0.6; pgv = 0.01; pwm = 0.01; ppgm =
0.70;pum = 0.70, #gen = 2000. #1 = 4.

D. Evaluation on real-world scenarios

speedup, considering the number of computatiorsdurees
(e = S / P). Table Il reports the speedup and the
computational efficiency of the parallel GA wheringsfour
computing resources.

The results in Table Il indicate that the parat& showed
a sub-linear speedup behavior, but very good efiity values
(i.e. near 0.8) when using four computing resouraese
achieved for the two more complex scenarios. These

The final evaluation of the proposed algorithms wasefficiency values suggest that using a parallelB@del is an

performed using the set of three real-world scesaffom
ANTEL, whose details are presented in Table I.

Table Il presents the best and average cost vaduesthe
standard deviation results obtained in 15 independe
executions of the sequential and parallel GA. Theet
required to execute the algorithnavg. time), in hours, and
the time to achieve the best solutitst4) are also reported.

efficient and effective approach to solve the MORND

TABLE Il PERFORMANCE METRICS FOR THE PARALLEL GA
Scenario speedup%s) Efficiency (es)
02 2.37 0.59
06 3.38 0.85
10 3.14 0.79




Fitness (x10%)

0 5 10 15 20 23 30 35

Execution time (hs)

Fig. 6. Fitness evolution example (Scenario 10).

Figure 6 presents an example of the graphical aizafgr
an important feature in EAs and other metaheussttbe
evolution of the average fithess values along theegations.
The comparative analysis shows that the parallelisz#ble to
compute more accurate solutions than the seque@#alin
significantly lower execution times, as it is pnetsal in the
sample evolution for the Scenario 10 problem instamhis
behavior was consistently detected in every exeoutif GA
and PGA for the three studied scenarios.

Table IV presents a comparison of the best resbitained
using GA and PGA with the results achieved with GRASP
method by Risso [5]. The comparative analysis shitnatthe
best results obtained with the evolutionary techegare still
far away from the best results previously preseritedthe
problem. However, the results by Risso are onhemakto
account as a relative reference baseline to compareesults,
due to two important considerations that have toenearked:
i) a less restrictive routing algorithm is used Bysso,
allowing more than two routes between each painaxes,
instead of the much more simple routing approactetbaon
primary/alternative paths used in the GAs proposedhis
work; and ii) the proposed GAs were designed tdovola
simple search approach, without using much protdpetific
information in the evolutionary operators, whilee tERASP
method by Risso heavily relies on a sophisticatatstruction
scheme for the candidate solutions.

Another important consideration is that all the thesults
obtained with the parallel GA represent a significa
improvement in the network design cost with resgecthe
actual design by ANTEL.

Taking into account the previously presented argus)eéhe
results obtained with the parallel GA can be comrgd as a
promising first step for solving the MORNDP with reon-
specific metaheuristic for the problem.

TABLE IV.

COMPARISON WITH PREVIOUS RESULTS

. best cost
Scenario GA/PGA best cost [5] gap
02 562549 532896 55%
06 486894 451360 7.8%
10 515785 451360 14.2 %
VI. CONCLUSIONS AND FUTURE WORK

This work presented the first advances on applying
sequential and a parallel evolutionary algorithmstive the
multi-overlay robust network design problem. The RIIDP
is a complex NP-hard optimization problem that niedae
structural design of important modern telecommuiaca
infrastructures, and few previous works have addmsits
resolution using generic metaheuristics.

The GA and the parallel GA proposed in this workreve
designed using simple and intuitive evolutionaryerapors,
without including much problem-specific informatioor
sophisticated optimization methods for the search.

The algorithms were evaluated over a set of thesd-r
world network design scenarios built with data [ded by
the Uruguayan national telecommunications
(ANTEL). The experimental analysis allowed us todode
that promising results were obtained with the psgubGAsS,
especially with the parallel GA, despite the simpjgproach
followed to design the evolutionary operators.

Regarding the computational efficiency, the patalésion
of the proposed GA significantly improved over thecution
times of the sequential GA. The speedup and cortipnt
efficiency values were almost-linear for two outtbé three
problem instances solved. In addition, the fitnegslution
analysis showed that the parallel GA was able tommgde
more accurate solutions than the sequential GA
significantly lower execution times. These two poes
results suggest that the use of parallel implentioms of GA
is a promising idea to efficiently solve the MORNDP

Two main lines remain to be tackled as future wdrith
already in progress: improving the efficiency oé throposed
methods, and improve the search mechanism in ¢odwstain
better network designs. Regarding the first line foture
work, the computational efficiency of the propos€is
should be increased by applying a more effectivealfs
strategy that allow increasing the number of sulbfadjpns in
the parallel GA without reducing the quality of thelutions.
On the other hand, the comparison with the previ@ssilts
obtained for the problem using other techniquesveldothat
there is still room to improve the evolutionary sémain order
to obtain better results with GAs. Regarding thssue,
additional simple evolutionary operators have toahalyzed,
and other variants of the problem (i.e., those thalude the
routing method described in [5]) should be studidte are
currently working in these commented lines rightvho

company



(1
(2
(3]
(4]
(5]

(6l

(7]

8]

19

[10]

[11]

REFERENCES

P. Oppenheimer. Top-Down Network Design. Cisco $r2804

V. Alwayn, Optical Network Design and ImplementatiaJohn Kane,
Ed. Indianapolis, USA: Cisco Press, 2004.

L. Monma, S. Munson, and R. Pulleyblank, Minimumigig two-
connected spanning networks. Mathematical Progragwol. 46, num
1-3, pp. 153-172, 1990.

T. Back, D. Fogel, and Z. Michalewicz (Eds.). Haodk of
Evolutionary Computation. IOP Publ. Ltd., BristdlK, 1997.

C. Risso, Optimizacion de Costos en Redes MulteaBabustas,
Master Thesis, Universidad de la Republica, Urug2éd0. Available
Online at  http:/premat.fing.edu.uy/IngenieriaMatematica/arok/
tesis_claudio_risso.pgdéccessed March 2011 (text in Spanish).

A. Corez, Overlay Network Planning by applying a ridbale
Neighbourhood Search Approach. Master Thesis, Usidad de la
Republica, Uruguay, 2010. Available online
http://premat.fing.edu.uy/IngenieriaMatematica/arob/tesis_andres c
orez.pdf accessed March 2011.

V. Kann and P. Crescenzi. (2003) A compendium of dpfimization
problems. Available online at http://www.nada.kth.se/~viggo/
problemlist/compendium.htmaccessed March 2011.

M. Grétschel, C. Monma, and M. Stoer, Design of&able Networks
in Network Models, Handbooks in Operations Researahd
Management Science 7. Amsterdam: North-Holland5199

D. Alevras, M. Grétschel, P. Jonas, U. Paul, anéM8ssaly. Survivable
Mobile Phone Network Architectures: Models and 8olu Methods.
IEEE Communications Magazine, 36:3 (1998) 88-93.

V. Sridha and J. Park, An Approach to Solving thévivable
capacitated network design problem Internationalrdal of Business
Data Communications and Networking (2): 1-16, 2005.

M. Pickavet, F. Poppe, J. Luystrermans, and P. [Bsteg A generic
algorithm for solving the capacitated survivabletwaek design
problem, en Proc. of Fifth International Conferencen
Telecommunication Systems, Brussels, Belgium, 1pp771-76.

at

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

M. Leitner, Solving two generalized network despyoblems with exact
and heuristic methods, Master Thesis. University Tafchnology,
Institute of Computer Graphics and Algorithms, \fian2006. Available
online at http://publik.tuwien.ac.at/files/pub-inf_4483.pdfaccessed
March 2011.

M. Leitner, G. Raidl, and B. Hu, Variable Neighbodd Search for the
Generalized Minimum Edge Biconnected Network Pnobl&letworks,
Vol. 55, No. 3, pp. 256-275, 2010.

S. Nesmachnow, H. Cancela, and E. Alba, Evolutipralgorithms
applied to reliable communication network designngiBeering
Optimization, Vol. 39, No. 7, pp. 831-855, 2007.

A. Capone, J. Elias, and F. Martignon, Routing arabource
optimization in service overlay networks. Computétetworks
53(1):180-190, 2009.

D. Goldberg, Genetic algorithms in search, optitnizg and machine
learning. New York: Addison-Wesley Longman PublihiCo, 1989.

M. Mitchell, An introduction to genetics algorithm€ambridge: MIT
Press, 1996.

E. Alba (Ed.). Parallel Metaheuristics: A New Clasfs Algorithms,
Wiley, 2005

E. Alba and M. Tomassini, Parallelism and Evolusion Algorithms.
IEEE Transactions on Evolutionary Computation, |BFESs, 6(5):443-
462, 2002.

E. Alba, F. Almeida, M. Blesa, C. Cotta, M. DiazDbrta, J.Gabarro, C.
Leon, G. Luque, J. Petit, C. Rodriguez, A. Rojas, B. Xhafa, Efficient
Parallel LAN/WAN Algorithms for Optimization. The RLLBA
Project, Parallel Computing 32(5-6):415-440, 2006.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Rdote Parallel
Programming with the Message-Passing Interface. M¥fess,
Cambridge, MA, USA, 1994,

Cluster FING. High Performance Scientific ComputetgUniversidad

de la Republica. Available online dittp://www.fing.edu.uy/cluster
accessed March 2011.




